Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cholinergic signaling, i.e., neurotransmission mediated by acetylcholine, is involved in a host of physiological processes, including learning and memory. Cholinergic dysfunction is commonly associated with neurodegenerative diseases, including Alzheimer’s disease. In the gut, acetylcholine acts as an excitatory neuromuscular signaler to mediate smooth muscle contraction, which facilitates peristaltic propulsion. Gastrointestinal dysfunction has also been associated with Alzheimer’s disease. This research focuses on the preparation of an electrochemical enzyme-based biosensor to monitor cholinergic signaling in the gut and its application for measuring electrically stimulated acetylcholine release in the mouse colon ex vivo. The biosensors were prepared by platinizing Pt microelectrodes through potential cycling in a potassium hexachloroplatinate (IV) solution to roughen the electrode surface and improve adhesion of the multienzyme film. These electrodes were then modified with a permselective poly(m-phenylenediamine) polymer film, which blocks electroactive interferents from reaching the underlying substrate while remaining permeable to small molecules like H2O2. A multienzyme film containing choline oxidase and acetylcholinesterase was then drop-cast on these modified electrodes. The sensor responds to acetylcholine and choline through the enzymatic production of H2O2, which is electrochemically oxidized to produce an increase in current with increasing acetylcholine or choline concentration. Important figures of merit include a sensitivity of 190 ± 10 mA mol−1 L cm−2, a limit of detection of 0.8 μmol L−1, and a batch reproducibility of 6.1% relative standard deviation at room temperature. These sensors were used to detect electrically stimulated acetylcholine release from mouse myenteric ganglia in the presence and absence of tetrodotoxin and neostigmine, an acetylcholinesterase inhibitor.more » « less
-
Tae Hyun Kim (Ed.)The environmentally sustainable production of biodiesel is important for providing both a renewable alternative transportation fuel as well as a fuel for power generation using diesel engines. This research evaluates the use of inexpensive catalysts derived from waste materials for converting triglycerides in seed oils into biodiesel composed of fatty acid methyl esters. The performance of CaO catalysts derived from the shells of oysters, mussels, lobsters, and chicken eggs was investigated. The shell-derived powders were calcined with and without the addition of zinc nitrate at 700–1000 °C for 4 h to yield CaO whereas the CaO-ZnO mixed catalyst were prepared by wet impregnation followed by calcination at 700 °C. The catalysts were characterized by XRF, XRD, TGA, SEM, FTIR and GC-MS. The CaO-ZnO catalysts showed slightly better conversion efficiency compared to CaO catalysts for the transesterification of canola oil. The mixed CaO-ZnO catalysts derived mainly from oyster shells showed the highest catalytic activity with >90% biodiesel yield at a 9:1 methanol-to-oil mole ratio within 10 min of ultrasonication. The reduction of toxicant emission from the generator is 43% and 60% for SO2, 11% and 26% for CO, were observed for the biodiesel blending levels of B20 and B40, respectively.more » « less
An official website of the United States government
